Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Topics in Antiviral Medicine ; 30(1 SUPPL):331-332, 2022.
Article in English | EMBASE | ID: covidwho-1880280

ABSTRACT

Background: SARS-CoV2 antibody testing is an important auxillary test especially for retrospective diagnosis or in patients with long COVID-19 or multisystem inflammatory syndrome of childhood. Epidemiological serology studies may also assist public health planning. Access to formal laboratory testing is not universal in many low-and middle-income (LMIC) countries and rapid lateral flow antibody tests are an attractive alternative. Performance of these tests has been inconsistent. A large-scale study was undertaken in South Africa, during the beta and delta waves, to assess the field-based performance of rapid point of care (POC) COVID-19 antibody tests. Methods: Symptomatic, ambulatory persons under investigation (PUIs) aged 18 years and older, presenting for SARS-CoV-2 diagnosis at public health facilities in three provinces, South Africa were enrolled at baseline. All patients completed a questionnaire regarding symptoms. Nasopharyngeal swabs were taken and processed for SARS-CoV-2 PCR testing using a GeneXpert (Cepheid, USA), or manual assay (ThermoFisher TaqPath assay or Seegene Allplex assay) on a real-time platform at routine accredited National Health Laboratory Service laboratories as per routine national protocols. Concomitantly, trained study staff performed three facility-based POC lateral flow antibody tests on a on a fingerstick sample and blood was collected for formal serology. POC tests were selected following a rapid in-laboratory evaluation. Asymptomatic contacts of people with confirmed COVID-19 were recruited into the asymptomatic study arm and rapid tests and PCR were performed. PCR and rapid positive patients and 500 negative controls were followed up at 5-14 days. Antibody tests were compared with formal serology performed on 2 platforms-Euroimmun (Euroimmun, Lubeck) IgA and IgG anti-S antibodies and Abbott Architect IgG test. Results: The sensitivity (S), specificity (Sp), positive (PPV) and negative predictive (NPV) values of tests for PUIs and contacts were calculated (Table 1)∗. Analyses using serology as a reference are forthcoming. Conclusion: Compared with PCR, performance of rapid POC COVID-19 antibody tests was poor with low sensitivity. This may reflect the patient cohort tested as humoral responses typically develop from day 7-14. The tests are unlikely to be useful for acute diagnosis but sensitivity may improve at later timepoints and further follow up data will be analysed by duration of symptom onset, severity of symptoms and wave (beta versus delta).

2.
Topics in Antiviral Medicine ; 30(1 SUPPL):331, 2022.
Article in English | EMBASE | ID: covidwho-1880279

ABSTRACT

Background: Access to SARS-CoV-2 polymerase chain reaction (PCR) testing is a bottleneck globally, especially in low-and middle-income countries (LMICs). Reliable point-of-care (POC) diagnostics for coronavirus disease 2019 (COVID-19) are cheaper and easier to scale-up than PCR especially in LMICs, and will facilitate interruption of transmission. We report the field-based effectiveness of rapid point-of-care (POC) antigen COVID-19 tests during the beta and delta waves, in South Africa. Methods: We enrolled symptomatic, ambulatory persons under investigation (PUIs) aged 18 years and older, presenting for SARS-CoV-2 diagnosis at public health facilities in three provinces, South Africa. All patients completed a questionnaire regarding symptoms. Nasopharyngeal swabs were taken and processed for SARS-CoV-2 PCR testing using either GeneXpert (Cepheid, USA), or with a manual assay (ThermoFisher TaqPath assay or Seegene Allplex assay) on a real-time PCR platform at routine, accredited National Health Laboratory Service laboratories, as per routine national protocols. Concomitantly, trained study staff performed three facility-based POC antigen tests on a nasal/nasopharyngeal swab, as recommended by the manufacturer. Asymptomatic contacts of people with confirmed COVID-19 were recruited into the asymptomatic study arm and rapid tests and PCR were performed. The sensitivity (S), specificity (Sp), positive (PPV) and negative predictive (NPV) values of tests for PUIs and contacts were calculated using PCR as the reference standard. Results: Between Oct 2020-2021 1816 participants were enrolled;472 (26%) tested PCR or rapid test positive;235 positives (49.8%) and 532 negatives were followed up at 5-14 days;574 asymptomatic contacts were enrolled, of which 21 (3.7%) were PCR positive. Performance of the three antigen tests are shown in Table 1∗. Conclusion: In a real world setting, during the beta and delta waves, compared with PCR the sensitivity of rapid antigen tests ranged from 35-68%. This may reflect low viral loads at diagnosis. Further work will compare antigen test performance in patients with high versus lower cycle threshold (Ct) values. Meanwhile, PCR testing capacity needs urgent scale-up in LMICs and improved POC diagnostics are needed to facilitate COVID-19 diagnosis in LMICs.

3.
Afr J Thorac Crit Care Med ; 27(4)2021.
Article in English | MEDLINE | ID: covidwho-1687378
4.
Afr J Thorac Crit Care Med ; 27(4)2021.
Article in English | MEDLINE | ID: covidwho-1502738

ABSTRACT

SUMMARY: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is transmitted mainly by aerosol in particles <10 µm that can remain suspended for hours before being inhaled. Because particulate filtering facepiece respirators ('respirators'; e.g. N95 masks) are more effective than surgical masks against bio-aerosols, many international organisations now recommend that health workers (HWs) wear a respirator when caring for individuals who may have COVID-19. In South Africa (SA), however, surgical masks are still recommended for the routine care of individuals with possible or confirmed COVID-19, with respirators reserved for so-called aerosol-generating procedures. In contrast, SA guidelines do recommend respirators for routine care of individuals with possible or confirmed tuberculosis (TB), which is also transmitted via aerosol. In health facilities in SA, distinguishing between TB and COVID-19 is challenging without examination and investigation, both of which may expose HWs to potentially infectious individuals. Symptom-based triage has limited utility in defining risk. Indeed, significant proportions of individuals with COVID-19 and/or pulmonary TB may not have symptoms and/or test negative. The prevalence of undiagnosed respiratory disease is therefore likely significant in many general clinical areas (e.g. waiting areas). Moreover, a proportion of HWs are HIV-positive and are at increased risk of severe COVID-19 and death. RECOMMENDATIONS: Sustained improvements in infection prevention and control (IPC) require reorganisation of systems to prioritise HW and patient safety. While this will take time, it is unacceptable to leave HWs exposed until such changes are made. We propose that the SA health system adopts a target of 'zero harm', aiming to eliminate transmission of respiratory pathogens to all individuals in every healthcare setting. Accordingly, we recommend: the use of respirators by all staff (clinical and non-clinical) during activities that involve contact or sharing air in indoor spaces with individuals who: (i) have not yet been clinically evaluated; or (ii) are thought or known to have TB and/or COVID-19 or other potentially harmful respiratory infections;the use of respirators that meet national and international manufacturing standards;evaluation of all respirators, at the least, by qualitative fit testing; andthe use of respirators as part of a 'package of care' in line with international IPC recommendations. We recognise that this will be challenging, not least due to global and national shortages of personal protective equipment (PPE). SA national policy around respiratory protective equipment enables a robust framework for manufacture and quality control and has been supported by local manufacturers and the Department of Trade, Industry and Competition. Respirator manufacturers should explore adaptations to improve comfort and reduce barriers to communication. Structural changes are needed urgently to improve the safety of health facilities: persistent advocacy and research around potential systems change remain essential.

6.
Afr J Thorac Crit Care Med ; 26(3)2020.
Article in English | MEDLINE | ID: covidwho-1395251

ABSTRACT

Asthmatics do not appear to have increased susceptibility to COVID-19.Uncontrolled severe asthma may be associated with worsened COVID-19 outcomes, especially in asthmatics managed with oral corticosteroids. Risk mitigation measures such as hand hygiene, social distancing and wearing of face masks must be observed at all times. Asthma should be managed as outlined in local and international guidelines.Ensure an adequate supply of medication, and inhaled corticosteroids should not be withdrawnChronic obstructive pulmonary disease (COPD) is associated with severe COVID-19 disease and poor outcomes. Maintenance of background medication is important to avoid exacerbations of COPD.Vaccination against influenza is strongly advised for all patients with asthma and COPDVaccination against pneumococcal infection is advisable for patients with COPD. Patients with obstructive airway disease on oral corticosteroids and/or with impaired lung function should take stringent safety precautions. This statement will be updated when more data become available Asthma and COPD occur commonly in South Africa. SARS-CoV-2 is a novel coronavirus, which can result in COVID-19-associated severe respiratory infection with respiratory failure and the need for mechanical ventilation. The South African Thoracic Society has prepared a guidance statement to assist clinicians and patients with asthma and COPD during the current epidemic.

7.
South Afr J Crit Care ; 37(2)2021.
Article in English | MEDLINE | ID: covidwho-1357602

ABSTRACT

Background: There are limited data about the coronavirus disease-19 (COVID-19)-related organisational responses and the challenges of expanding a critical care service in a resource-limited setting. Objectives: To describe the ICU organisational response to the pandemic and the main outcomes of the intensive care service of a large state teaching hospital in South Africa. Methods: Data were extracted from administrative records and a prospective patient database with ethical approval. An ICU expansion plan was developed, and resource constraints identified. A triage tool was distributed to referring wards and hospitals. Intensive care was reserved for patients who required invasive mechanical ventilation (IMV). The total number of ICU beds was increased from 25 to 54 at peak periods, with additional non-COVID ICU capacity required during the second wave. The availability of nursing staff was the main factor limiting expansion. A ward-based high flow nasal oxygen (HFNO) service reduced the need for ICU admission of patients who failed conventional oxygen therapy. A team was established to intubate and transfer patients requiring ICU admission but was only available for the first wave. Results: We admitted 461 COVID-19 patients to the ICU over a 13-month period from 5 April 2020 to 5 May 2021 spanning two waves of admissions. The median age was 50 years and duration of ICU stay was 9 days. More than a third of the patients (35%; n=161) survived to hospital discharge. Conclusion: Pre-planning, leadership, teamwork, flexibility and good communication were essential elements for an effective response. A shortage of nurses was the main constraint on ICU expansion. HFNO may have reduced the requirement for ICU admission, but patients intubated after failing HFNO had a poor prognosis. Contributions of the study: We describe the organisational requirements to successfully expand critical care facilities and strategies to reduce the need for invasive mechanical ventilation in COVID-19 pneumonia. We also present the intensive care outcomes of these patients in a resource-constrained environment.

8.
Afr J Thorac Crit Care Med ; 26(2)2020.
Article in English | MEDLINE | ID: covidwho-1304841

ABSTRACT

Coronavirus disease 2019 (COVID-19) due to a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has resulted in over 1.5 million confirmed cases and close to 100 000 deaths. In the majority of symptomatic cases, COVID-19 results in a mild disease predominantly characterised by upper respiratory tract symptoms. Reverse transcription polymerase chain reaction (RT-PCR) using a nasopharyngeal sample is the mainstay of diagnosis, but there is an ~30% false negative rate early in the disease and in patients with mild disease, and therefore repeat testing may be required. RT-PCR positivity can persist for several days after resolution of symptoms. IgM and IgG antibody responses become positive several days after the onset of symptoms, and robust antibody responses are detectable in the second week of illness. Antibody-based immunoassays have a limited role in the diagnosis of early symptomatic disease. However, their incremental benefit over RT-PCR in the first 2 weeks of illness is currently being clarified in ongoing studies. Such assays may be useful for surveillance purposes. However, their role in potentially selecting individuals who may benefit from vaccination, or as a biomarker identifying persons who could be redeployed into essential employment roles, is being investigated. Rapid antibody-based immunoassays that detect viral antigen in nasopharyngeal samples are being developed and evaluated.

9.
New England Journal of Medicine ; 384(20):1885-1898, 2021.
Article in English | Academic Search Complete | ID: covidwho-1238048

ABSTRACT

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiradetory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOxl nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5x1O10 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D6146 virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9,2020, we enrolled 2026 HIV-negative adults (median age, 30 years);1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid49 developed in 23 of 717 placebo recipients (3.296) and in 19 of750 vaccine recipients (2.596), for an efficacy of 21.9% (95% confidence interval ICI], -49.9 to 59.8). Among the 42 participants with Covid49, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant;vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, 76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOxl nCoV-19 vaccine did not show protection against mild-to-moderate Covid49 due to the B.1.351 variant. [ABSTRACT FROM AUTHOR] Copyright of New England Journal of Medicine is the property of New England Journal of Medicine and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

10.
S Afr Med J ; 0(0): 13162, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-994170

ABSTRACT

BACKGROUND: Given the global shortage of N95 filtering facepiece respirators (FFP2 in Europe) during the COVID-19 pandemic, KN95 masks (Chinese equivalent of the N95 and FFP2) were imported and distributed in South Africa (SA). However, there are hardly any published independent safety data on KN95 masks. OBJECTIVES: To evaluate the seal, fit and filtration efficiency of several brands of KN95 masks marketed for widespread use in SA healthcare facilities, using standardised testing protocols. METHODS: The verifiability of manufacturer and technical details was first ascertained, followed by evaluation of the number of layers comprising the mask material. The testing protocol involved a directly observed positive and negative pressure user seal check, which if passed was followed by qualitative fit testing (sodium saccharin) in healthy laboratory or healthcare workers. Quantitative fit testing (3M) was used to validate the qualitative fit testing method. The filtration efficacy and integrity of the mask filter material were evaluated using a particle counter-based testing rig utilising aerosolised saline (expressed as filtration efficacy of 0.3 µm particles). Halyard FLUIDSHIELD 3 N95 and 3M 1860 N95 masks were used as controls. RESULTS: Twelve KN95 mask brands (total of 36 masks) were evaluated in 7 participants. The mask type and manufacturing details were printed on only 2/12 brands (17%) as per National Institute of Occupational Safety and Health and European Union regulatory requirements. There was considerable variability in the number of KN95 mask layers (between 3 and 6 layers in the 12 brands evaluated). The seal check pass rate was significantly lower in KN95 compared with N95 masks (1/36 (3%) v. 12/12 (100%); p<0.0001). Modification of the KN95 ear-loop tension using head straps or staples, or improving the facial seal using Micropore 3M tape, enhanced seal test performance in 15/36 KN95 masks evaluated (42%). However, none of these 15 passed downstream qualitative fit testing compared with the control N95 masks (0/15 v. 12/12; p<0.0001). Only 4/8 (50%) of the KN95 brands tested passed the minimum filtration requirements for an N95 mask (suboptimal KN95 filtration efficacy varied from 12% to 78%, compared with 56% for a surgical mask and >99% for the N95 masks at the 0.3 µm particle size). CONCLUSIONS: The KN95 masks tested failed the stipulated safety thresholds associated with protection of healthcare workers against airborne pathogens such as SARS-CoV-2. These preliminary data have implications for the regulation of masks and their distribution to healthcare workers and facilities in SA.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Materials Testing/methods , N95 Respirators/standards , Occupational Exposure/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Equipment Design/methods , Equipment Design/standards , Equipment Failure Analysis , Humans , SARS-CoV-2/isolation & purification , Safety Management/organization & administration , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL